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ABSTRACT

It is shown that a linear network having an amplitude and
phase response which is a periodic function of frequency can
be synthesized with a tapped delay line with amplitude and
phase weightings on each tap. The theory of this technique
for the realization of frequency periodic filters is devel-
oped. The example which motivates the discussion of this
problem is the use of a single frequency periodic filter to
replace a bank of complex dispersive subpulse networks em-
ployed in a large time-bandwidth product linear FM pulse
compression network. The availability of high quality tapped
quartz delay lines end the ease with which amplitude and
phase adjustments can be made on each tap appear to make
this technique attractive for a number of future applications.,
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PREFACE

The material for this paper was prepared approximately a year

and one half ago with the expectation that it would eventually form one

section of a considerably larger report on linear FM pulse compression.

Since that time the material for the larger report has grown and evolved

into several papers, two of which were presented at the recent Pulse

Compression Symposium at RADC. It is more than timely therefore to

publish this material at this time and, except for minor editorial

revisions, this TM reproduces the draft version of this paper prepared

earlier.
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TAPPED DELAY LINE REALIZATIONS OF FREQUENCY PERIODIC FILTERS

AND THEIR APPLICATION TO LINEAR FM PULSE COMPRESSION

In this paper we shall see how the desired periodic filter response

can be realized with the aid of a high quality tapped delay line having

amplitude and phase weightings on the output of each tap. Such a filter

has a frequency response which is periodic in frequency with a period

equal to the reciprocal of the delay line tap spacing.

In our case, we are interested in synthesizing a set of dispersive

networks which are all identical except for a center frequency displacement.

If this tapped delay line simulates the desired frequency response over

a frequency band, then the repetitive character of the network in frequency

enables us to use the filter at a number of frequencies simultaneously.

Thus we are able to replace a whole set of dispersive networks by one

tapped delay line.

Before considering the reasoning which leads us to the use of a

tapped delay line, we will review briefly the basic properties of the

complex notation which is used to characterize the response of linear

networks*

Consider a linear time-invariant network which is characterized by

an impulse response h(t). We let x(t) be the real waveform input to the

filter, and y(t) be the real waveform at the output of the filter. See

Figure 1.

For a discussion of the complex representation of real waveforms, see
P. M. Woodward, "Probability and Information Theory, with Applications to
Radar" (McGraw-Hill, 1953), and D. Gabor, Journal Institutf of Elect.
Engineers (Pt. III), 93, p. 429, 1946. See also, J. Dugundji, "Envelopes
and Pre-Envelopes of Real Waveforms", Vol. 1T-4, PGIT, March, 1958.
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FIGURE I

y(t) is related to x(t) and h(t) by a convolution integral.

yt f h(t-T)x(T)dT

All realizable filters satisfy h(t) - 0 for t < 0, so that the convolu-

tion can equally well be written

t

y(t) f h(t-T)x(T)dT

Convolution in the time domain corresponds to multiplication in the

frequency domain, and therefore

Y(f) - H(f)X(f) [or Y(w) - H(w)X(w), ( - 2TTf

where Y(f), H(f) and X(f) are Fourier transforms of y(t), h(t) and x(t),

respectively.

Usually, in circuit theory, the response of an electrical network is

characterized by its effect on complex time vaveforms (e.g., ajWt, J- -/-)

rather than real time waveforms (e.g., coswt). The reason for this, of

course, is that any real time waveform must have a Fourier transform which
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is conjugate symmetric about zero frequency and therefore any real wave-

form is completely characterized by its frequency function for positive

frequencies alone: The frequency function for negative frequencies can

be mapped to zero without destroying any information about the time wave-

form, and this is exactly the procedure used to obtain the complex

representation which proves to be notationally convenient and leads to

algebraic simplifications. Xc(f) , the complex (frequency) representation

of X(f), is defined simply as

() 0 f< 0

c(f) x(), f>0

Yc(f) is similarly defined. The frequency response of the network is then

written

Y c(f) - H(f)X Cf)

The complex time representation of x(t), written x (t), is the

inverse Fourier transform of X c(f). The real waveform can always be obtained

from its complex representation by taking twice the real part. This complex

representation sets up a one-to-one correspondence between real and complex

waveforms. In the frequency domain the correspondence is obtained by mapping

the frequency funct ion to zero for negative frequencies, and leaving the

frequency function for positive frequencies unperturbed. In the time domain

the correspondence between real and complex waveforms is set up using Hilbert

transforms. Xc(t), the complex representation of x(t), is given by

x(t) x(t) + J. jx(t)

whereVx(t) a Hilbert transform of x(t). We find, taking the Fourier

transform of both sides, thatvmust satisfy
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X~)-~XMf + FIN [iX(t)]I

(F denotes Fourier transform)

or

F F[tV - ( x(f), f>

JX(f), f< 0

It is seen that introduces a multiplication by -J for positive

frequencies and multiplication by +j for negative frequencies. In the

time domain this operation corresponds to convolution with the time

function l/Trt, so

74 XMt - 1rJ T)d
(t-T)

which is the usual formula for the Hilbert transform. It is as though

x(t) had been passed through a linear filter with impulse response 1/t.

However, this filter is not realizable because the impulse response is not

zero for t less than zero. ) can be viewed in the frequency domain as an

infinite-bandwidth 900 phase shifter. If we allow arbitrarily long time

delays in the impulse response, it should be possible to realizej1to any

desired degree of accuracy. Fortunately in the synthesis of filters, time

delays are usually of no consequence.

has a number of useful properties, but we shall need only a few of

them.

(cos wt) - sin wt (w - 2TTf)

(sin Wt) - - cos wt

(a - - X rl

;((real functiton ) =real function
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The first two relations are easily proved by mapping coswt and siat to

their complex representations, multiplying by -J, and taking twice the

real part. The third relation results from. the fact that Wapplied twice

converts X(f) into -X(f). The fourth relation is true because

preserves conjugate symmetry of the frequency function.

There is another important relationship which we will need. Consider

the following function

x(t) = u(t) coswt

where u(t) has a frequency function which vanishes outside the interval

(-w,w). We can obtain the Hilbert transform of x(t) by replacing the right-

hand side of the equation by its complex representation, multiplying by -J,

and taking twice the real part.

The complex representation of x(t) is given by

Xc(t ) - -1 u(t)
eJw t

The Fourier transform of this function, which can be expressed as a

convolution oi the respective frequency functions, is zero for negative

frequencies. Twice the real part of this function equals x(t). Therefore

the function must indeed be the complex representation of x(t).

Multiplying the complex representation by -J, and taking twice the

real part, we have

N [u(t)coswt] - 29~e P-, u(t)eiWt] - u(t)sinft

Similarly

( [u(t)sint] - -u(t)coswt

Let us now proceed to synthesize, using. the above relationships, 4

function of time whose frequency function is a repetitive version of some
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desired (non-periodic) function. Consider a network'characterized by

an impulse response h(t) and a frequency transfer function H(f) with

the desired amplitude and phase response over a band of frequencies W1.

Since H(f) is to be used only over the band WF , we can set H(f) equal to

zero outside this band, as shown in Figure 2.

HMf

-Fo- WF W W"f- fo "y fo' T fo+ T

FIGURE 2

H(f) is the Fourier transform of a real function, and therefore it must

be conjugate symmetric. If it were not for the image component of H(f)

at -f0, we could form the Rep. H(f) in order to obtain a periodic function

of frequency. The desired result can be obtained by carrying out the

following steps:

For discussion of the Rep and Comb operations, see P. 4. Woodward,
loc. cit., p. 28.
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I. Replace h(t) by hc(t), so that the frequency transfer functior

is zero for f<O.

h(t) - h (t) = h(t) + 1 J h(t)

2. Make the resulting frequency function periodic by performing

RepwF on H c(f). As Woodward shows, the operation RepW in theF c F

frequency domain corresponds to the operation (I/WF) Comb l/Fin

the time domain. The result is, omitting constants of

proportionality,

CombT F [h(t)] + J CombT F h(t)]I (TF = lNWF)

This impulse response as it stands is not satisfactory because

it is not real. We must make the frequency function of this

waveform conjugate symmetric by mapping the frequency spectrum

to zero for negative frequencies and taking the real part of

the resulting time waveform.

3. We map the negative frequency part of the frequency function of

the above time waveform to zero. For any time waveform (real or

complex) this result can be obtained by adding to it j timed the

Hilbert transform of the time waveform.

The result is

CombT [h(t)] + j Comb TF frq h(t)]

+ i')lCombT L 1h(t)1 -;VComb TF IN h(t)1

4. The above waveform has a frequency function with the desired

repetitive character for positive frequencies. Because the

frequency function is zero for negative frequencies, the wave-

form is the complex representation of a real waveform which is

obtained by taking twice the real part. Ignoring constants of

proportionality, as before, we have the desired impulse response

h'(t)
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h'(t) - CombT F[h(t)] - W(CombT [ 9*ht ]

In order to see how this impulse response can be realized with a

tapped delay line, let us consider the Comb operation. The Comb opera-

tion, as defined by Woodward, multiplies the time waveform by an infinite

series of uniformly spaced delta functions.

Comb T [ h(t)] I h(t) 6 (t-kT F)

h h(kTF) 6 (t-kT F)

where the summations are over the index k. This impulse response consists

of a weighted sequence of 6- functions and it can be realized with a

tapped delay line where the output of the kth tap is weighted with amplitude

h(krF). Writing out the expression for h', we have

CO

where we have abbreviated hk = h(kTF) and hk = h(kTF).

Regarding the problem of realizability, the first term in the expression

for h'(t) will be zero for negative t, but the second term in the expression

for h'(t) is not necessarily zero for negative t. The reason for this is

that the Hilbert transform of a function which is zero for negative t yields

a function of time which is not, in general, zero for negative t. We have

seen earlier that the Hilbert transform operation is equivalent to passing

the waveform through a linear filter with non-realizable impulse response

1/rrt and so this result is not surprising. However, as mentioned earlier,

the Hilbert transform can be closely approximated by a realizable filter if

sufficiently large time delays are allowed.' For example, consider a filter

with an impulse response [rCt-T G)1 for t>O ,and zero for t<O. This

function is plotted in Figure 3.
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This impulse response is a truncated version of a Hilbert transformer in

series with a time delay T, the effects of the truncation becoming smaller

as T becomes larger. We assume In the discussion which follows that this

type of approximation is used for the Hilbert transform wherever it occurs

and that sufficient time delay is introduced where necessary to maintain

realizability of the required impulse responses. We assume, in particular,

that h(t) has been delayed sufficiently so that both hk and are zero

for k < 0.

The tapped delay line realization of h'(t) is shown in Figure 4.

As we have pointed out earlier, the - operation gives a broad-band

+ 900 phase shift. A somewhat more practical scheme may be to use at the

outputs of the adder channels two broadband + 450 phase shifters as shown

in Figure 5. Here a sufficient (but equal) time delay is assumed to be

included in both phase shifters so that they can be accurately realized

over the frequency band of interest.

In effect, we can view the operation on the output of each delay line

tap as an amplitude weighting ak and a phase shift 0k' where

hk = ak cos Ok

k ak sin 0k

or

ak k [ k)i~j

t 1 -
0k tan- (hk/hk)

It is useful to work out the expression for the frequency response of the

tapped delay line, H'(f), in terms of the coefficients ak and *k' H'(f)

is found by taking the Fourier transform of the expression obtained earlier

for h'(t).
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+-45 0

FIGURE 5

0o

H'(f) - f h'(t)e j 2rrft dt

I .j2Tf WF  Ik- J 2rrfkTF
" jhke 2 flF+J i

O 0 J k -"J2T f kF

X ake e

As expected, this function is periodic in frequency with period WF =/ F .

Noting the orthogonality relation

0 e 1r  T  d if m kT j2rf(m- k)TF
e ~df *i n4

f a0 f k)
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where m and k are integers, the expression for H'(f) can be used to find

ak and Ok in terms of H'(f).

fo+ - Wf

ake J k f H(f)e j 2 fkT F df

o F

The prime has been left off the H(f) because H'(f) - H(f) over the region

of integration (again ignoring constants of proportionality). Taking the

real and imaginary parts of both sides, we obtain

hk - Re (ake ) =R f H(f)e j 2 T f kTF df

fo- F
0 WF

f0+ WF

AJ~k j j2TfIF
h = Lake ) %& H(f)e kT F df

fo- kWF

Thus it is seen that the requlx'd tap weightings, h and can be

easily computed from the required H(f).

The tapped line has a frequency response which is equal to the

desired frequency response H(f) in the band of interest, and is periodic

in frequency with period equal to the reciprocal of the delay line tap

spacinS. The behavior of the network frequency response over the band

of interest depends only on these tap weightings. Since these tap

weightings can be obtained from a set of potentiometer adjustments, the

response of the line can be changed easily by readjusting these pots.

With the aid of a high quality quartz delay line having many taps, one

should be able to synthesize a very complicated network characteristic.
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It should be noted that this tapped delay line method ot filter synthesis

is perfectly general; its use is not restricted to the synthesis of

dispersive networks only.

Suppose we wish to utilize the characteristics of this filter over

only one of these frequency periods. The situation is shown schematically

in Figure 6. Hs(f) denotes the frequency response of a band selection filter.

/I He

- f

FIGURE 6

In the above plot only the amplitude of the frequency response has been

shown. A similar plot could be shown indicating the repetitive phase shift

characteristics of the network. That portion of the frequency response

which we desire to use can be extracted by means of the band selection

filter Ha(f) with a linear phase and a constant amplitude characteristic

over the region in which H'(f) differs appreciably from zero, but which
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drops off sufficiently rapidly to exclude responses from neighboring

bands.

More generally, we can consider the desired H(f) to be decomposed

into the product H'(f).H (f), where H'(f) is realized with a tapped delay

line and Hs(f) represents the band selection filter. In this manner

the non ideal characteristics of H s(f) can be compensated somewhat by

adjustment of H'(f). Thus the burden of accurately approximating H(f)

can be shared between both H'(f) and Hs(f), though most of the burden

will probably still fall on H'(f) because of its ease of adjustment.

The number of taps required on the line depends on the nature of

the filter we are attempting to synthesize. If the filter response is

identically zero outside of some band, then an infinite number of taps

are required, in principle. However, if the filter response is smoothly

tapered over this band, then only a finite number of these tap weightings

will differ appreciably from zero and a good approximation to the desired

filter response can be had by utilizing a delay line with only a finite

number of taps. The filter impulse response, including the band selection

filter, can occupy at most a band of width WF in frequency and approximately

NTF = N/WF in time. The time-bandwidth product of the filter impulse

response can at most be equal to the product of these quantities which is

simply N, the number of taps on the line. The practical design problems

in obtaining a band selection filter, and the approximation problem associated

with truncating the number of taps on the delay line will result in a filter

impulse response whose time-bandwidth product is somewhat less than N.

The tapped delay line realization of the repetitive filter is valid

at all frequencies from zero to infinity. In practice, the device would

have a bandwidth limited by the frequency response of the delay line employed.

If a band selection filter were used, it would probably be centered on the

center frequency of the bandpass tapped delay line.

Sometimes it is desirable to use a tapped delay line whose center

frequency is zero, i.e. a lowpass line. A number of commercially available
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distributed parameter electrical delay lines are of this type. In order

to see how the desired response can be realized with tapped lopass delay

lines, let us write the impulse response h(t) in the form

h(t) - u(t) cos w t - v(t) sin w0 t

If h(t) is assumed to be bandlimited to the region (-2wo, 2wo , then

u(t) and v(t) will have a finite spectrum only in the frequency range

(-W0 W0). Noting the relations proved earlier,

9 [ u(t) cos ot] - u(t) sin Wot

[v(t) sin w 0 t] - - v(t) cos t

the desired impulse response h'(t) can be written

h'(t) - CombTF [h(t)] - (CombTF V h(t)]

=CombT [u(t) cos W t - v(t) sin w t

-;V Com1T F Z ~(u(t) Cos wt - v(t) sin Wt)]

cos W0ot ComTF u(t) - sin W 0t Com1F v(t)

. [snwot ComF u(t) + cos W t CombT Fv(t)]

Now, if CombT u(t) and CombT v(t) were .functions whose spectra wereF F
confined to the frequency range (!wo' wo ), the W could be brought into the

bracket in the last term according to the rule. The Comb operator, of course,
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gives an infinite bandwidth, but suppose we consider a Comb operator which

has been filtered so as to eliminate all but the very low frequency com-

ponents. We shall denote this operator by Com . As a practical matter,

the Comb operation which can be realized with a tapped delay line is

limited in this way because of the finite bandwidth of the delay line.

Recalling that the Comb operation involves multiplication in the time

domain, the bandwidth occupied by Comb; u(t) is equal to the sum of the

bandwidths occupied by Com and u(t).F Provided that the carrier

frequency w is chosen to be larger than the resulting bandwidth,

can be brought into the bracket according to the rule. Combining

coefficients of cos w0t and sin W0t, we have the simple result, ignoring

constants of proportionality as usual,

h'(t) - cos w t Com u(t) - sin W t Comb' v(t)0o M F 0o F

Here the desired impulse response is repetitive in frequency, but this

repetition extends only over the bandwidth of the delay line. As before,

the Comb operations can be realized with the aid of tapped lines, where

the tap weightings are equal to sampled values of the function in question.

We denote uk = u(kTrF) and vk = v(kTF). A method for realizing h'(t) using

tapped delay lines is shown in Figure 7. It can be easily shown that

all time-varying terms in the impulse response of this system are zero.

The configuration shown requires two lowpass delay lines, but no Hilbert

transformers are necessary. If the band over which the frequency response

should be repetitive has width W, the delay lines should have a bandwidth

W

Let us consider now how the tapped delay line network can be used in

the synthesis of a linear FM pulse compression network with large TW product.

The required group delay versus frequency characteristic is repeated in

Figure 8. This characteristic can be resolved into the sum of the two time

delay versus frequency characteristics shown in Figure 9.
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The sawtooth function is periodic in f and hence could be realized

with the aid of a tapped line. The staircase function also suggests

the use of a tapped delay line with uniformly spaced taps spaced To
apart and with a band selection filter of width W at the output of

each tap. Each of these networks would have to be all-pass, i.e. have

uniform amplitude characteristic across the band, and the desired group

delay characteristic would be obtained by cascading these two networks

in series.

As a practical matter it is not possible to construct band selection

filters which are perfectly rectangular and a repetitive filter which is

a perfect sawtooth. One method which might prove satisfactory would be

to use a set of amplitude selection filters, somewhat overlapping, to

partition the signal band into a number of frequency bands, as shown in

Figure 10. The output of each filter could be translated in frequency

SET OF AMPLITUDE SELECTION FILTERS

____ f

FIGURE 10

so as to obtain a set of equally spaced but non overlapping bands as shown

in Figure 11. Each band can be delayed an amount proportional to its

A AAA'AAAAJA A
FIGURE 11
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frequency, the results added and passed through a repetitive network

with the desired dispersive characteristic for each band. The result

can be resolved back down into its separate frequency components with

a set of band-selection filters, and the resulting bands can be

translated so they once again occupy adjacent positions in frequency,

as shown in Figure 10.

If the amplitude selection filters are reasonably tapered and

reasonably closely spaced, the overall amplitude characteristic should

be almost flat. The repetitive network need only have its nearly saw-

tooth character within the bands where substantial signal exists and

therefore the requirements imposed upon the repetitive network can be

relaxed considerably.

Other arrangements can be used employing one or several repetitive

networks which will allow us to obtain the desired dispersive

characteristics over several frequency bands simultaneously. The above

arrangement is meant to serve only as an example. The application of

repetitive networks to the realization of this type of pulse compression

system will require much further study.
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